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An approach for determining the free energy of classical fluids developed in a recent paper [U. F. Ed-
gal, J. Chem. Phys. 94, 8179 (1991)] is employed here in an approximate form for the hard-sphere fluid.
The nature of the hard-particle potential readily allows an accurate investigation of the equation of state
essentially over the entire density regime. Although a direct prediction of a first-order-type phase transi-
tion is not made, the present approach is, however, able to provide results which agree well with
computer-simulation data both in the low-density branch of the equation of state and also in the high-
density branch. A van der Waals-like loop is also reproduced in the supposed phase-transition region.
The equation of state of the hard-sphere fluid is formulated in terms of a (highly) nonlinear differential
equation with a single unknown parameter. The approximate nature of the present scheme is then seen
to be due to the approximate formulation provided for the unknown parameter.

PACS number(s): 05.70.Ce, 64.30.+t, 61.20.Ne, 05.70.Fh

I. INTRODUCTION

We present an investigation of the hard-sphere fluid
employing nearest-neighbor probability density functions
[1,2] (NNPDF’s) which describe nearest-neighbor corre-
lations in fluid systems. In scaled particle theory [1],
NNPDF’s employing the first nearest neighbor is used to
develop a theory of fluids, while more recently, generali-
zations involving more distant neighbors [2] have also
been used to provide a theory of fluids. Developments in-
dicate that the use of NNPDF’s may be expected to allow
for an “efficient” investigation of fluid or material sys-
tems (at all densities and temperatures). The investiga-
tion of hard-particle fluids employing NNPDF’s is there-
fore of considerable importance as the hard-particle fluid
is usually considered a good first-order model [3] in the
investigation of most other realistic fluid systems. In-
terestingly enough, we find that the nature of the hard-
sphere potential, i.e.,

o for r <2r

®(M=10 for r>2r,

(2r, being the hard-sphere radius of closest approach), al-
lows for an exact analytic approach (avoiding extensive
simulation computations) if the first-nearest-neighbor
probability density function [2] g,(r;) may be known
analytically. However, since higher-order NNPDF’s
(which may be known exactly only from an elaborate
scheme [2]) are required to obtain g,(r,) exactly, a for-
mulation for g,(r;) is therefore provided which involves
a single unknown parameter which is readily chosen ade-
quately (although approximately) leading to accurate re-
sults for the equation of state of the hard-sphere system
for all physically allowable densities. Scaled particle
theory provides a different approximate approach for
finding g (7). (See also the article by Reiss [4] for a brief
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review.) Our formulation yields a nonlinear differential
equation governing the compressibility factor which we
integrate by the Runge-Kutta method. We assume the
partition function Z(N, V) may be written in terms of the
“reduced volume” [2] V as (QV)Y/N!. The quantity Q is
assumed to have the dimension of (volume) ! making the
partion function dimensionless. The configurational con-
tribution to the partition function [Z (N, V)] is obtained
by setting  to unity. ¥ may be expressed in one of two
interesting ways, V=(V —eNkV,) or V=€V, of which
we employ the former for the most part in this paper (the
later expression was employed in Ref. [2]). V is the
volume of the system containing N identical hard spheres
each with a hard-core volume V,. In the “closest-
packed” state, the average volume per particle (the
Wigner-Seitz or Voronoi cell) for N large enough is k¥,
where in one, two, and three dimensions, k is, respective-
ly [5], 1, 2/7)V'3, and (3/m)V'2. Clearly, the maximum
allowable density p (=N /V) is reached when the packing
fraction p(=pV,) is equal to 1/k(=mn,,,). The parame-
ter € is a dimensionless quantity which is expected to ap-
proach unity (while € approaches zero) as 7 tends to 7.,
since Z (N, V')~0 in the high-density limit. On the other
hand, € clearly approaches unity as 77—0, while it is not
so clear what € may approach. (However, see the devel-
opments in Sec. II.)

In Sec. II the scheme employing NNPDF’s and the
governing nonlinear differential equations for € and the
compressibility factor are developed. The differential
equations are then solved in the low-density limit yielding
results which agree with well known results. In Sec. III,
we present results for the equation of state at all densities
(including possible phase-transition behavior) obtained
from numerically integrating the above nonlinear
differential equations. Our results agree quite well with
computer simulation results both in the low- and high-
density branches of the equation of state. This we consid-
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er significant, as it has so far been difficult to provide an
adequate theory of realistic fluid systems at high densi-
ties. Also, our method is able to reproduce a van der
Waals-like loop in the region of the supposed phase tran-
sition. This therefore indicates that a full scale use of
NNPDF’s as detailed in Ref. [2] may be expected to pro-
vide accurate numerical results including a direct predic-
tion of a first-order phase transition in the hard-sphere
system which our present approximate approach has so
far been unable to provide. Nevertheless, our results are
also able to allow for reasonable assessment of certain
methods of investigation and long-standing notions con-
cerning the hard-particle system in the neighborhood of a
phase transition.

II. SCHEME EMPLOYING NNPDF’s
AND APPROXIMATE SOLUTIONS FOR ¢, ¢

The scheme for determining € (as discussed in an ear-
lier paper [2]) is first presented in this section for the case
of the hard-sphere fluid. We begin by employing the
equation [2]

Z(N, V)=f0VZ(N—1,V1 PQAV, . (1)

Q is the volume in internal coordinate space, which in
our present situation may be set at unity. P is given as [2]

P=[ - [l Lxp...

Xexp[ —BE,(x'|,Xy, . . .

,X,)

yX,)]dx, - dx,.
()

g?l(xl, ...,X,) is the general point process [2] n-
nearest-neighbor probability density function of the ori-
gin (said to be situated at x}) assumed on the boundary of
volume ¥V, (V| may vary from O to V). It is assumed the
boundary of ¥V, is locally flat “almost everywhere” ‘‘al-
most always.” Observe that in the present problem, we
may employ P in place of its average { P ) (see Ref. [2] for
a detailed explanation). E,(x},X;,...,X,) is the contri-
bution to the energy of the hard-particle system for the
given configuration x,, . . ., x,, of the n-nearest neighbors
when a particle is introduced at the origin xj. Since the
system presently under consideration is sufficiently sim-
ple, we find E, is independent of x}. In fact, the simplici-
ty of the system (owing to the nature of its interaction po-
tential) allows that knowledge of the distance of the ori-
gin to its nearest neighbor is sufficient to determine [2]
E,. Hence only the first-nearest-neighbor NNPDF (i.e.,
the n =1 case) need be considered in Eq. (2). In that
case, Eq. (2) may be written exactly as

P=[glx)e " ™ax, , 3)
where
0 for r;>2b,
Ez(xl):

oo for r{<2by .

r, is the radial part of x, and b, is the radius of a hard-
particle sphere. If the NNPDF (n =1 case) is known ex-
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actly, then € and hence the equation of state of the hard-

sphere fluid can be calculated exactly. g’;l(xl) is usually
known exactly only through some extensive numerical
calculations [2]. In the present paper however, an ap-

proximate scheme is employed to determine g}l(‘ (x);
herein lies the approximate nature of the approach in this
paper which is clearly a variation of that given elsewhere
[2]. This scheme can be expected to be useful as we may
envisage that physical arguments may readily be available

for adequately approximating g’l‘,“ (X ..., X,) espe-
cially when # is small (i.e., n =1, say). For systems with
“softer” potentials, n needs to be at least ~ 10, indicating
why the hard-particle fluid probably constitutes the sim-
plest of known realistic fluid systems that can be investi-
gated.

In the low-density limit, we expect the NNPDF for
n =1 to tend to that for the ‘“Poisson fluid” [2], i.e.,

—(2/3)mpr3
P )

lim g, (r,)—27r2pe

p—0
(The superscript x| has been dropped.) This is a “bell”-
shaped function with “long lower tail.”” We expect the
following properties for g,(r;) at other densities on obvi-
ous physical grounds: (i) The basic bell-shape (with long
lower tail) structure should be generally retained for
g1(ry) at virtually all densities, (ii) the “spread” of g,(r;)
(indicative of the variance of 7, for the most part) should
decrease as p increases; and (iii) the mean (r,) [which
approximately corresponds to the peak of g,(7,)] should
approach that for the Poisson fluid as p—0 (i.e., n—0);
while for n—m,,,, the mean should decrease towards
zero. To satisfy the first and second conditions, we may
simply employ the basic form of (4). To satisfy the third
condition, an effective density g (or 7j) must be employed
such that p—p as 7—O0 (allowing (r,) coincide with
that of the Poisson fluid) while for n—,,,,, we require
§— o (allowing {7, ) to tend to zero). Several relations
may be chosen between g and p of which we employ the
simple form

P=p(1 =0/ Npna) ™"
where m(n) is some positive function of 7. If m(7n)
varies slowly (as will be obvious in later developments) in
a broad range of the 7 regime, the above form can be
considered quite appropriate. The formulation for the
(n =1 case) NNPDF is therefore given for all densities as

~.3
—(2/3)mpry ) 5)

’

g(ry)=2mripe

Hence we may write

_ o _ o 2~ *(2/3)7rpr:1‘
P= 2b0g‘(r‘)dr1_f2b0 dr2mripe
=exp[ —4n(1—nk) " "™] .  (6)

At low densities, all but the upper tail of g,(r;) con-
tributes to the above integral; while at high densities,
only the lower tail contributes. Hence we may expect
that the rate of decrease of P (i.e., |dP /dn|) should gen-
erally increase from a small value at low densities, reach
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a maximum somewhere at mid-density (7, say), and be-
come small again at high densities. Clearly, an estimate
of 7, is obtained by determining the density where the lo-
cation of the maximum of g,(r;) [i.e., r;(max) say] is
equal to 2b,. We may readily show that [6]
r1(max)=(1/7p)!/3. Hence 7, is then obtained from the
equation

—m(ny)
(l_nb/nmax) e :1/67’b .

1, is expected to be <<n,,,, so the left-hand side of the
above equation may be approximated as unity. 7, is then
readily estimated as ~0.167 (in approximate conformity
with the initial assumption). This result indicates that
only in a very small region of the 7 domain (.e.,
057 50.167) do we have to bother about adequately for-
mulating most portions (i.e., the upper tail and middle
portions) of g,(r,) to yield proper behavior for P. How-
ever, since at such low densities g is substantially insensi-
tive to variations in m, a similar insensitivity is also ex-
pected of g,(r,) (and hence of P as well). In which case,
it is sufficient to fix m at some (average) value in the
very-low-density regime (n<m,) to provide adequate
behavior for P.

For densities reasonably greater than 7,, the form of
most portions of g,(r;) become irrelevant and only the
lower tail region need be adequately approximated.
Hence our original formulation of g, (r,), in which it was
claimed that (r,) [which is usually close to r;(max)]
tends to zero as 17— 7., Was actually to provide a prop-
er formulation for the lower tail of g,(7,) which produces
the right effect on P. (In fact, a consideration of the na-
ture of the general point process [2] shows that {r,), al-
though monotonically decreasing with increasing 7, does
not necessarily tend to zero in the 7_,, limit.) From the
above, it is clear that the nature of the decrease of P (as
density increases) may be said to be partly due to a mono-
tonic decrease of {7,) [or r;(max)] and partly due to a
monotonic decrease in the “spread” of g,(r,). In our for-
mulation, while the second effect may be said to be
reasonable [as the spread in g,(7;) tends to the right limit
of zero in the 7)., limit], the first effect is definitely
“harsh” (as (r,) is made to tend to zero rather than a
nonzero value in the 7,,, limit). Hence we may expect
that we need to decrease m as we increase 7, in order to
nullify the above effect, thus providing an appropriate
behavior for P. In the region of the (supposed) phase
transition, (r, ) will still definitely decrease monotonical-
ly with density as the average volume per particle must
always decrease with density. However, owing to strong
density fluctuations, the spread in g,(r;) will be larger
than what may be expected for the spread outside (but
generally within the neighborhood of) the phase transi-
tion region [thus resulting in a g,(7;) which is relatively
less sharply peaked within the region of phase transition].
This effect has a tendency to either reduce the rate at
which the area under the tail of g,(7;) decreases (leading
to decrease in the rate at which P decreases) or in fact in-
crease the area under the tail (thereby increasing P) as 1
increases. These effects clearly result in a rapid decrease
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to much smaller m values implying that large gradients in
m(n) occur in the phase transition region. As we go into
the high-density region within the phase transition, how-
ever, we may expect that the effect of the broadening of
g1(r;) should begin to decrease considerably [especially
because the spread of g,(r;) should begin to decrease
substantially] thereby causing the rate of decrease of the
area under the tail of g,(r,) to “recover.” Hence m(n) is
expected to stop dropping quickly (and in fact may possi-
bly briefly increase). In conclusion therefore, we may ex-
pect that while m(n) may drop with sharp gradients (in
some nonobvious fashion) in the low-density region of the
phase transition, it should also generally decrease with 7
but with much “milder” slopes outside the phase-
transition region (low- and high-density portions), as well
as in the high-density region within the phase-transition
regime.
From Eq. (1), we easily arrive at the equation

9Z(N,V)

o =Z(N—1,V)ePm | (7)

where P=eP™ and hence P(n)=—4n(1—nk)"""”.
We may write

_ _OeV,V) _ 1 de
e(N—1,V)=€(N,V) 3N € Vidp (8)

(It is assumed € may be written as a function of only the
single variable p.) Writing P’,H as pressure and
Helmholtz free energy respectively, we have from
P'=—(38H /3V)y (T is temperature) the hard-sphere
fluid equation of state:

1+ ke

—(1— -1
¢=(1—enk) dn

9)

¢ is the compressibility factor P'/pKT (where K is the
Boltzmann constant). Employing the expression of Eq.
(8) in Eq. (7) yields the differential equation governing €
as

de
1+n’k——
— ,B(y) -1 2, de
=e " Mexp | —1+(1—enk) 1+7 kd—n (10)

This is a “differential algebraic equation” [7] whose solu-
tions are usually found either by approximate techniques
or at best by numerical means, owing to extreme non-
linearities. P(7) is some function of n which may be for-
mulated approximately by formulating the m (7)) function
approximately. € and m(mn) may be presumed analytic
functions of 7 in the low-density limit. Hence we may
write in the low-density limit, €=372_¢a,1",
m(n)= 3 7_ob,n", and employing these in (10) yields



©

1—mk 3 a,m"
m=0

In

1+7’k 3 ma,,n™ ! ]

m=1

=9’k S ma,n™ '+nk 3, a,n"
m=1

m =0

— 2:::017'117"

4n(1—nk)

11—k 3 a,n"
m=0

(11)

Keeping up to terms of order 7 easily yields the result
ay=4/k, which agrees with the low-density result given
in Ref. [2] (after employing the approximation
e #M=1—41. Note also that the € variable of Ref. [2] ac-
tually has the same meaning as the variable € in this pa-
per.) Using this result in (9) is also seen to yield the well
known van der Waals [3] equation of state for hard-
particle fluids. If next we keep say up to terms of order
7° in (11) and equate coefficients, we obtain the first three
coefficients in the expansion for € and hence we may
write

€=4/k +(4by—16/k)n
+(4b, +2kby+2kb3—48b+ 128 /k >+ - - - .
We may then deduce the equation of state
¢=1+4n+(8kb,—16)n*
+(256—96bok +12b,k +6k*b} +6k?*by)n*+ - - - .
(12)

The first two coefficients in the above expansion agree
with the exact virial coefficients [3], implying our scheme
is actually reasonable at least in the very-low density re-
gime. However, the third, fourth, etc. coefficients are ex-
pressed in terms of yet unknown parameters b,, b, etc.
[associated with the variable m(%)]. Employing known
exact results for the third and fourth virial coefficients
(which are respectively 10 and 18.365) [3], we get
b,=2.407 and b;=—0.9468. In which case, we may
write

m(7)=2.407—0.9468n+ - - - . (13)

The above expression indicates m(7) decreases (reason-
ably slowly) with 7, confirming our earlier conjecture.
Since the virial series is usually expected to be valid only
in the low-density regime (before the phase transition),
the series of (13) (even when extensively developed by re-
taining higher-order virial terms) may therefore be said to
be only a low-density series. Also, we find that the series
of (12) shows that the behavior of m () has little effect on
the equation of state in the very-low-density regime (a
statement in line with this fact was earlier made). In
which case, we may expect that only in the large-n region
of the low-density regime (which is a reasonably small re-
gion near the phase transition) may the variation of m ()
become of considerable effect. Since m (%) is not so rap-
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idly varying outside phase transition, we therefore expect
that some fixed (average) value for m is sufficient to accu-
rately reproduce the equation of state throughout the en-
tire low-density regime (agreeing with a similar remark
earlier made for the very-low-density regime n37,).
This (average) value should obviously be smaller than the
leading term (i.e., 2.407) in the series of (13). Similarly,
we may also expect that a suitable average for m(7n)
(which should be smaller than that used in the low-
density regime) may be employed in the high-density re-
gion (beyond the phase transition) as this region is known
to be of rather small width.

Next, we attempt to formulate a differential equation
for ¢. From (9), we have

_ - 2 de
é(1—enk) 1+77kdn].
Using this in (10) yields
#(1—enk)=exp{¢—1+P(n)} . (14)

Hence we obtain

=1 1
nk  nké

expl¢—4n(l—nk) "P—1]. (15

We can invert (10) expressing € in terms of de/d, i.e.,

de - de
ARAE — m(n) _ Zk__
In 1+nkd77 +4n(1—nk) n dn
€=
2 de —m(n)
nk |In |1+7 kﬂ +1+4n(1—nk)
(16)
From (16), we have
1+n2kg£
l—enk= ui
In 1+n2k% J+1+4n(1—nkr"""’
Hence, using (9) yields
— 2, de —m(n)
¢=In [1+7y kE +4n(1—nk)"™7+1 . (17)
We then obtain
g—e=+k[exp(¢—1—47](1—nk)_'"("))-—1]. (18)
n 7

But from (15), we have
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de _ 1 1 1 _d¢ 1 |d¢ —m(7)
N e s - —4(1—qk) "m0
dn 7’k [n2k¢ nk¢? dn ke ldn =i
4y km(m(1—nk)—l""‘")—u—nk)‘m(">§ﬁdf7ﬂ1n<1—nk) I
Xexp[o—4n(1—nk) "M —1] . (19)
Equating (18) and (19) then finally yields
—m 2 —m—1 —mdm
¢ |o—1—4n(1—nmk) "—4n* \mk(1—nk) —(1—mnk) Tln(l—nk)

¢ _ 7 (20)
dn n(¢—1)

The above equation is an exact reformulation of the equation of state of the hard-particle system in terms of the param-
eter m(7n). The fact that m(7n) can only be approximated provides the reason why our present scheme is actually an ap-
proximate scheme. Equation (20) is an ordinary first-order (nonlinear) differential equation (in standard form) for which
standard methods [7] are available for solving it. It is usual [7] to guarantee the analyticity of the dependent variable
such as ¢ in Eq. (20) by showing that the right-hand side of the equation is an analytic function of the two variables 7, ¢;
however, in our present treatment, we expect we may presume that ¢ is analytic at least at low densities. Hence writing
é as 32_oc,m", we easily employ (20) to obtain (after a very lengthy algebraic manipulation)

cocim—cintein?+2coc,m?—2c,m*+3cic,mP —3coey P+ 3P+ -

= —c(z)+c0—200c17]+c1n+4co1]—~2c0c2172+cz1]2—c%772+4c1772+8bocokn2—2c‘0c3n3+c3n3

—2cic,n e, P +8bgc kP +12b cok P +6cok2b 3P +6cobok P+ - - - .

By equating coefficients we readily see we obtain the re-
sult of Eq. (12). In the high-density regime, we expect
¢ >>1. Hence we may approximate Eq. (20) as

d¢ 1 1 _
——~—|— |+ | —+41—qk)™ "
dn n ¢ ] K

+4n (mk(1—nk) ™!

_mdm

— 1_ m='"

(1—mk) dn

XIn(1—nk) 21

This equation is a linear differential equation whose solu-
tion is readily obtained by exact methods [7]. Alterna-
tively, we find from inspection of Eq. (17) that since the
logarithmic function is generally not a strongly varying
function, we may immediately deduce the high-density
asymptotic solution for ¢ as

d~4an(1—nk) ™m0 (22)

Since both m(7) and In(1—nk) are (relatively) not
strongly varying functions, we find that both sides of (21)
behave asymptotically as 4nkm (9)(1—nk)" 17" [em-
ploying the solution of (22)], hence verifying the adequa-
cy of (22). Also, using standard methods [7], the solution
to (21) is obtained as

-

d=exp fg(n)dn”c-i—fexp —fg(”r])dn ]f(’r])dn] ,
(23)

where ¢ is a constant of integration, g(n)=—1/7, and

f(n)=%+4(l—nk)"”

+4n |mk(1—nk) ™!

(11— —mdm —
(1—nk) dnln(l nk) | .

For ease of evaluating (23), we may further approximate
the original differential equation [i.e., Eq. (21)] and hence
write the valid approximation
~i i — —m’ i_d_ 1— —m
f(n) 17+77k(1 nk) +77k2 dn(. nk)

(where m' is some constant [say, m (7,,,)], which is arbi-
trarily close to m (1) everywhere in the neighborhood of
Nmax» Drovided the neighborhood may be chosen
sufficiently small. Clearly, this choice for m’ is possible
because m (1) is assumed to be generally a slowly varying
function). Observe that even though the difference be-
tween this expression and the previous expression for
f(7) may increase as 71—, their ratio nevertheless
tends to unity in likeness to Stirling’s approximation.
Hence a good estimate of Eq. (23) becomes
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1 4 PR | _
==lc+ [ {1+—(1— my 22 (1— m
dm=— e fl (1= k) 2 g LR }dn

Lt | ) (k) (D)
n nk?(—m'+1) nk

= . . (24)
C
—+1 |——=In(1—nk)+—(1—qk) "™ (m'=1) .
n nk? " nk? K

Since m’ is “close” to m (n), the last terms of the right-
most expressions above certainly dominate sufficiently
close to 7,,. [It is assumed that m () > 1.] It therefore
becomes clear that the asymptotic expression as given by
(22) is actually valid since 49p—4/nk? in the limit.

III. NUMERICAL COMPUTATIONS
FOR THE EQUATION OF STATE
AND THE PHASE TRANSITION

In this section, we determine the equation of state of
the hard-sphere system for all physically allowable densi-
ties (1) by numerically integrating the governing equa-
tions of Sec II. The (conjectured) phase-transition region
is also investigated. Clearly, we may first solve complete-
ly for either € or ¢ before solving for the other. Alterna-
tively, we may also solve for both € and ¢ simultaneously
by, for instance, making some initial choice of e(n) (for
all ) and then using this (along with de/dn which is
easily deduced) in (9) to compute ¢(7). This is then em-
ployed in (15) to compute a new e(7). [It is assumed that
m(mn) is known.] A new function is then derived for ¢(7)
again employing (9). After some iterations, we may ex-
pect that both € and ¢ may be obtained accurately (simul-
taneously). Unfortunately, however, our experience is
that the errors in the initial choice for € soon lead to
significant error in € which makes [1+7n%k(de/d7)] and
hence ¢ negative at several 7 values; thereafter, € and
hence ¢ do not seem to be able to “recover” in further
iterations. A similar difficulty was also encountered
when Egs. (15) and (17) were solved iteratively as above.
In this case, the logarithmic function in (17) could not be
computed (at several 7 values) after a few iterations due
to ““‘unavoidable” numerical errors causing its argument
to be negative.

On the other hand, we may attempt to solve for € com-
pletely first, employing Eq. (16) in an iteration process [by

J

making an initial choice for de/dn and then using (16) to
compute € and hence de/dn, etc.]; however, for similar
reasons as above, the logarithm function in (16) soon be-
comes impossible to compute. The above difficulties
seem to us to arise from the fact that the extreme non-
linearities in the governing equations are so “sensitive”
that the initial incompatibility of the “inexact functional
form for P(7) [or m(7)] and the initial choice for ¢ or €
leads to further errors from which we never recover. It is
our speculation therefore, that a possible solution to this
difficulty may be found by progressively varying P(7) [or
m(7)] in a way compatible with € or ¢ such that the
functional form for P(n) tends (in the limit) to the
desired form. In the present work, our approach to
averting the above difficulty is by solving completely for
¢ first [employing Eq. (20)] before deducing e(%). It is
our belief that this method is probably the only computa-
tionally viable way (under the circumstance).
Equation (20) may be written in standard form as

a¢ _

dn f(n,¢). (25)
Clearly, the right-hand side of this equation is singular at
the points (n=0,¢7#1), (n7#0,¢=1), ()=n,,,) in the 7-¢
plane. Hence, even though both sides of (25) may be said
to be analytic at a point such as (=0,¢=1) (as is clear
from the analysis of Sec. II), we have found that tech-
niques requiring use of Taylor-series expansion of “f>’ to
integrate (25) (such as the Runge-Kutta method which is
employed in this paper) may be expected to yield unreli-
able results in general close to both ends of the 7 regime.
This is because we expect several terms of a Taylor-series
expansion to be required to appropriately approximate
f(n,¢) close to the point 7=0 (which is close to points of
singularity). We therefore transform to new variables in
an attempt to obtain a right-hand side of (25) which is
free of singularities in essential regions of the relevant 7
domain. We begin by employing the new variable x
defined as x =In7, and this leads to

— b (b= 1)—deX(1—ke®)~m |14 Trke™ _dm 1 ke)
aé _ I ket 26)
dx (¢—1) ’
f
We observe the p=0 point is mapped to x = — oo while without needing to make |x| unmanageably large (as for

= Nmax iS mapped to x =x_, = —0.30046. Hence we
may never begin integration from »=0. However, it may
be noted that we may go sufficiently close to 7=0

instance, for 7=0.001, x is only —6.907 76). Also we
find that taking equal ‘“‘steps” in the x domain (during in-
tegration) allows us to move more slowly near =0 (than
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in the higher-density regions). Hence we find ‘“‘good”
computational accuracy may usually be guaranteed for
arbitrary closeness to =0 since the above transforma-
tion allows us to take smaller step sizes in the 77 domain
as we approach the =0 point (in the limit n—O0, the
step size tends to zero). This development is clearly relat-
ed to the fact that the finite Taylor-series expansion (used
to develop the Rung-Kutta scheme for the numerical in-
tegration) is valid within a region which gets smaller as
the point about which the Taylor series is developed ap-
proaches a singularity. In which case, we may expect
that computational accuracy may be ascertained for situ-

X

du

dx

WVE +1) | —Va e (1—ke*)~m |14 ke

The right-hand side has no singularity except at x =x_,,,
where we expect ¢, u — . Hence (27) is readily integrat-
ed adequately starting from arbitrarily close to n=0. A
practical condition that may be used to integrate (27) is
u(x;)=0 for x; sufficiently negative. [Alternatively, we
may note that the expansion ¢=1-+4e* is adequate at
sufficiently low densities and hence we may write
u(xi)=16e2x‘, which is, however, close to zero for x;
sufficiently negative.]

In Sec. II, we conjectured the existence of two distinct
branches of the ¢ vs 17 curve (one in the low-density re-
gime before a supposed phase transition region and the
other at high densities beyond the phase transition) with
distinct (roughly) constant m values. In Fig. 1, we
present plots of ¢ vs 1 for various constant m values ob-
tained by integrating Eq. (27) employing the Runge-
Kutta method in fourth order. The results of computa-
tion are found essentially not to change as we increased
the number of Runge-Kutta steps from 100 to 1000 (and
above). A comparison with computer simulation results
from the literature [8] (also presented in Fig. 1) clearly
shows that constant m values are reasonably adequate to
characterize the low-density branch and at least the low-
density end of the high-density branch of the equation of
state. For the low-density branch, good ‘“global” agree-
ment between computer simulation results and our com-
putations is obtained for m =~ 1.84 [which is less than the
leading term in the series expansion developed for m(7n)
in Sec. II], while for the low-density end of the high-
density branch, we require m=1.14 to obtain good
agreement. A careful observation shows that in the low-
density end of a given branch, our values for ¢ are slight-
ly smaller than those of computer simulation, while at the
high-density end, our values for ¢ become slightly larger.
This therefore shows that the m(7n) function used for ei-
ther branch of the equation of state must monotonically
decrease with 7 (with a “gentle” slope) in conformity
with our earlier speculations. In particular, we note that
unlike the low-density regime (before the phase transi-
tion), ¢(7) is sensitive to the behavior of m(n) almost
everywhere in the high-density regime (beyond the phase
transition). Also, we may expect that the high-density re-

U. F. EDGAL AND D. L. HUBER

1—ke*

48

ations where for instance the right-hand side of (26) may
be transformed into a function whose Taylor-series ex-
pansion has a nonvanishing radius of convergence which
at the worst may decrease to zero as we approach the
7n=0 point.

We further employ the transformation involving the
variable u where u =(¢—1)% It is assumed ¢ > 1, hence
u =2 0. Now, we have

ldu_ ,_ .49
2 dx (¢ l)dx’

in which case we may write

—Eln(l-—ke") [u(—o)=0].

dm y 27)

[

gion beyond phase transition is of considerably greater
width than the region at low densities where m(7n) may
be said to be of substantial influence on ¢(7). Hence (un-
like in the low-density branch of the equation of state),
the use of some constant average value for “m” in deter-
mining the high-density branch of the equation of state
can only be very crude. In which case, it may therefore
be worthwhile attempting to calculate m(n) more accu-
rately at high densities. At this stage, it is necessary to
point out that, owing to the nature of our present investi-
gation [in which a rigorous formulation of m(n) is ab-
sent], we content ourselves only with some average global
comparison of our results with computer simulation re-
sults. For further comparison with other results involv-
ing a variety of analytical methods, the reader may refer
to developments in Ref. [8]. Note also that computations
very close to 7,,, had to be avoided as they involved
such problems as “large numbers,” “inability to compute
sensitive functions a In(1—enk) (due to unavoidable nu-
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FIG. 1. ¢ vs 7 for different constant m values in the hard-
particle system (m is varied from 0.79 to 4.29 in increments of
0.35 and from 5.34 to 20.04 in increments of 1.05); 0, computer
simulation data from Erpenbeck and Wood [8(a)]; X, low-
density branch computer simulation data from Ref. [8(b)]; O,
high-density branch computer simulation data from Ref. [8(b)].
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merical errors which resulted in negative argument),” etc.
Consequently, our largest density of consideration was
usually only slightly larger than 0.735.

In the mid-density region (occurring within the density
regime over which the low- and high-density branches of
the equation of state are usually said to be invalid), earlier
methods (both analytic and computer simulation) have
sometimes been unable to yield results totally devoid of
ambiguities. In fact, difficulties often exist in ascertaining
[9] whether or not computer simulations adequately sam-
ple phase space in the high-density regime (including the
mid-densities). Hence such a region (especially at mid-
densities) is usually seen necessarily as one of metastabili-
ty [9]. In some cases, however, the mid-density region is
treated as one of an equilibrium first-order phase transi-
tion (as was originally conceived [8,10]) involving fixed
temperature, pressure, and chemical potential (between
different phases). Modern analytic theories (such as the
density-functional theory [11]) which employ this point
of view have provided some progress, as they yield results
which approximately agree with those of computer simu-
lation methods (in which the metastability problem is
cleverly avoided [10]).

In the present paper, we do not work within the gen-
eral limitations of computer simulation methods so that
we may always assume existence of equilibrium for which
the partition function (as given in Sec. I) is well defined
for all physically allowable densities. We begin investiga-
tion of the mid-density range by first attempting to com-
pute the possible chemical potential everywhere in the
1n-¢ plane. Employing the expression for Z(N,V) in
terms of €, and noting from first principles that:

%[ln(N!)]=ln[(N+1)!]—1n[N!]~1nN for N>>1,

we easily obtain the chemical potential as
u=Ag(n,¢)+B , (28)

where A,B are constants dependent on temperature and
g(n,¢)=¢+In{n(1—enk)”'}. We evaluate ¢ for given
constant m at 10000 equispaced points in the x domain
(corresponding to logarithmically distributed points in
the 7 domain varying from ~0.01 to 2,,,,). This is re-
peated for various constant m values ranging from 0.5 to
10 in steps of 0.05, allowing us to fill the 1-¢ plane with
possible curves that may serve as branches of the equa-
tion of state. By proper tabulation, we are then able (by
simple interpolation) to determine for a given pressure
(P') the different 7 and p values corresponding to
different constant m values. With these data, it is then
easy to search (given the P’ value) for the 7 value at
which a given y value occurs. Clearly, some interpola-
tion scheme is necessary here. Also we may expect our
computations (including interpolations) to be highly ac-
curate as about 200 equation of state curves (each com-
puted using ‘“‘double precision” calculations at 10000
points as mentioned above) are involved. By the above,
we are then able to accurately plot several equi- (chemi-
cal) potential curves in the 1-¢ plane, the intent being to
discover if in one or a few distinct regions of the P'-V
plane, we may find equipotential curves having slope
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dP'/dV close to zero. This way, many more acceptable
solutions for our equation of state may be constructed
(employing notions of the first-order phase transition) by
linking different equation of state curves (with different
constant m values) through the neighborhood of the
above described regions of “near-zero slope.” On doing
this (cf. Fig. 2), we find that over a broad region of the
P’-V plane, the equipotential curves intersect very many
equation of state curves (for a broad range of m values)
over a ‘“‘small” pressure range. This is definitely a near-
zero slope behavior for the equipotential curves over a
broad region of the P’-V plane. Hence even though the
above procedure may not allow us to identify one or a
few local regions as locations of possible phase transition,
the above observation nevertheless provides some valida-
tion of a possible phase transition in the hard-sphere sys-
tem.

We note as in Sec. II that m(n) (although a very
difficult function to determine at a phase transition) may
nevertheless be reasonably approximated as a linearly de-
creasing function in the low-density portion of phase
transition, while in the high-density portion (beginning
from n=mngy say), it may be taken as a constant (myp).
The introduction of a nonvanishing slope for m(n) at the
phase transition obviously results in a slightly modified
solution for ¢(n), (), and p in the high-density regime
[see, for instance, Eq. (27)]. Hence there exists some
promise of observing the features of a phase transition.
Clearly, each n point (referred to as 7qy) on the low-
density branch of the equation of state may serve as pos-
sible candidates for the density at the onset of the phase
transition. Also, various 71y, Mp, and myp values are
possible. (m|p is taken as the constant m value used for
the low-density branch of the equation of state.) Interest-
ingly enough, we find that suitable combinations of
N1 MTH M LD Mup values exist which allow us to have a
van der Waals—like loop in the equation of state. This is
particularly encouraging as it provides a valid (though
approximate) means by which we may once more attempt
to locate a phase-transition region. We impose certain
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FIG. 2. Equi- (chemical) potential lines (solid lines) in the
pressure-volume plane. Equations of state for different m values
are shown as dashed lines; chemical potentials are computed as
the g function of Eq. (28).
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conditions consistent with behavior at a phase transition
of the first-order type. We, however, first note that in our
experience, no combination(s) of the parameters
N1 MTH> M LD, Mup may be found which allows pressure
to remain constant over an appreciable density range; im-
plying a linear drop in m(7) is actually a crude, though
reasonable approximation for the behavior at a phase
transition. The parameters are therefore chosen to allow
a van der Waals—like loop to fully develop. Since a legiti-
mate systematic approach may readily be developed for
the formulation of m(7n) at low densities (see Sec. II), we
concentrate our effort in trying to formulate m(n)
beyond the low-density branch. Hence we fix mp
preferably at the value corresponding to that of computer
simulation results. Various myp values are then arbi-
trarily chosen. For each myp value, we chose various
possible 1 values. For a given myp,ny combination,
Ny is then adjusted until the average pressure (P’),
which occurs over the density range from 7 to
(gL + A7), is equal to the pressure P; obtained at 7.
({(P") is simply computed by employing several pressure
values at equally spaced intervals in the 17 domain.) The
point p =7 +An (where An>0) is the density at which
the pressure is also equal to Pr. Clearly, by the
“Maxwell equal area construction” [3], Ay is the width of
the possible phase transition region [which begins from
n=mn., Where m(n) begins to drop. Clearly, we expect
An>nrg—nrL]- Additionally, it is also required that the

chemical potential at =7z +An be equal to that at
n=my., and interestingly enough, this was usually found
to be the case. Note that in all of the above, the require-
ment of equality is usually said to be reasonably satisfied
when it is to within at least one decimal place or so. In
Table I, we display several myp values and their associat-
ed values for 9y, (Mrg—71L)s AN, P7, (P, p(n=mn1),
and u(n=mnp,+An). Interpolation had to be done in a
number of cases. The pressure was computed as nkd.
Also the chemical potential was computed using the
g(mn,¢) function of Eq. (28).

Table I shows that 7y =~0.498 usually provides the
largest region over which a phase transition may occur
for a given myp value (elaborate data are provided for
the myp=1.14 case). Hence it would therefore seem
that the phase transition is somewhat “frustrated” at oth-
er npp values, implying we may have some criterion
(though definitely not rigorous) for suggesting that the
(low) density at onset of the phase transition may be tak-
en as ~0.498. This is interesting as it agrees accurately
with the earlier result [10]. Other obvious features which
may help in fixing np (including myp) more rigorously
do not seem to exist. However, we may expect that fu-
ture investigations may employ nonobvious features [as
“degree of constancy of pressure” in the phase transition
region, or the behavior of €(n) and hence of Z(N,V)
beyond the phase transition etc.] in more rigorously
determining values for 9 and myp. Clearly of course,

TABLE 1. Data for possible phase-transition behavior in the hard-sphere system (mp =1.84).

Mup nTL NtH ML Ay Pr (P") “n=nrL) uwn=nrL+An)
0.4011 0.0480 0.0512 3.662 3.663 8.737 8.782
1.40 0.4985 0.0557 0.0581 9.722 9.724 18.579 18.622
0.6017 0.0506 0.0508 38.779 38.778 56.730 56.363
0.4011 0.0605 0.0646 3.662 3.664 8.737 8.758
1.30 0.4985 0.0697 0.0728 9.722 9.725 18.579 18.537
0.6017 0.0627 0.0637 38.779 38.774 56.730 56.400
0.4011 0.0765 0.0830 3.662 3.665 8.737 8.773
1.18 0.4985 0.0873 0.0935 9.722 9.722 18.579 18.750
0.6017 0.0771 0.0789 38.779 38.775 56.730 56.477
0.3511 0.0710 0.0782 2.336 2.337 6.131 6.172
0.4011 0.0820 0.0893 3.662 3.665 8.737 8.769
0.4508 0.0900 0.0969 5.893 5.898 12.609 12.628
1.14 0.4888 0.0930 0.0993 8.750 8.745 17.115 17.134
0.4985 0.0934 0.0993 9.722 9.724 18.579 18.599
0.5083 0.0931 0.0991 10.886 10.887 20.256 20.307
0.5494 0.0917 0.0947 17.923 17.919 30.157 30.365
0.6017 0.0818 0.0834 38.779 38.733 56.730 56.951
0.4011 0.0880 0.0958 3.662 3.668 8.737 8.749
1.10 0.4985 0.0996 0.1071 9.722 9.725 18.579 18.749
0.6017 0.0867 0.0878 38.779 38.774 56.730 56.696
0.4011 0.1025 0.1138 3.662 3.661 8.737 8.762
1.00 0.4985 0.1155 0.1251 9.722 9.725 18.579 18.781
0.6017 0.0987 0.0991 38.779 38.771 56.730 56.594
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an ultimate resolution of the behavior of m(n) every-
where may be expected only through the use of the much
more extensive simulation procedure involving nearest-
neighbor correlations as suggested in an earlier paper [2].
The “free-volume” theory [8,10,12], which along with
its extensions, are largely phenomenological (as the ex-
tent of their validity may not be readily assessed even for
7 slightly removed from 7_,,), may, however, be expect-
ed to be “exact” at the limit of 7.,,. Interestingly
enough, the theory predicts the asymptotic expression

d(n)~3(1—nqk)" 1, (29)

which agrees exactly in form with our asymptotic expres-
sion of Eq. (22). Recent methods [13] relate thermo-
dynamic properties to geometrical features of the hard-
particle system. Close to 7,,,,, where essential parame-
ters that characterize the geometrical features are easily
formulated, this is found to lead to the same asymptotic
equation of state as (29). The free-volume theory is actu-
ally also a theory which focuses on geometry in the
hard-sphere system, and its relationship with similar
theories is made clear in the articles by Speedy [14] using
ensemble theory. (See also Ref. [4], where Reiss gives a
review, including a discussion of the similarity in the sta-
tistical geometric approaches to both porous or compos-
ite media and fluids.) Equation (29) suggests we may as-
sume m —1 as an exact solution at the n=1,,, limit.
Clearly also, the factor of 47 in Eq. (22) tends to 2.9619
in the 7,,,, limit, agreeing quite accurately with the pre-
factor in (29). Hence, up to this point, the following may
be considered significant achievements made by our
theory in the high-density regime. First, we have been
able to reproduce the van der Waals loop usually con-
sidered an expected result for a valid ““first-order” model
(or theory) of phase transitions. Second, we have also
been able to determine a limiting value for m as 97— 7,,,,-
Finally, the density at onset of phase transition (low-
density side) has been identified (though nonrigourously).
In Fig. 3 we present a plot of pressure (P'kV,/kyT) vs
volume (1/7mk —1) employing m;p=1.84, n1; =0.498,

Ll
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FIG. 3. Equation of state of the hard-particle system using
myp=1.84. Computer simulation data are shown with symbols
(the plot symbols are the same as in Fig. 1).

and the myp value corresponding with literature data
(see Fig. 1); i.e., myp=1.14. Note here that m(n) is
made to drop linearly from 1.14 at the phase transition
edge (high density side, i.e., 7=0.5978) to 1.0 at
=" max( =0.7405) corresponding to a gentle slope as
was expected. Comparison with computer simulation
data over a broad pressure range is facilitated by use of a
full log plot which simply shows very good agreement
practically everywhere. (We note, however, that the
phase transition region width of ~0.045 usually quoted
in the literature [8] is about half of ours.) The van der
Waals—like loop is not shown in this case. In Fig. 4, we
also show for this case, a plot of m(n) vs 7. Since our
theory was unable to predict an myp, of 1.14, we present
additional data in Fig. 3 for the case myp =1 (which our
theory may be said to approximately predict). The van
der Waals loop is shown in this case.
From Eq. (6), we have that

4P _ _ 4(1—nk) " +4gmk(1—nk)~m*D
dn
—mdm
— 1—nk) "——In(1—nk
4n(1—nk) dn n(1—nk)
Xexp[ —4n(1—nk)™ "] . (30)
Hence dP/dn=0 when the condition

n(dm /dqg)in(1—nk)=1+ngmk(1—nk)~! is satisfied.
In the region npL <<%, dm/dn=(myp—myp)/
(ng —7rL)- Hence for the case involving mp=1.84,
71.=0.498, and myp=1.14, we have that dm/dn
= —7.4946. We find in this case therefore that at 7
slightly less than 0.498, dP/dn= —2.6645X 1073, while
for mn  slightly larger than 0.498, dP/dy
=—3.4130X107% This is a sudden large decrease in
|dP /dm| as we enter into phase transition (in conformity
with the discussion in Sec. II). We observe also from Eq.
(30) that as 7 increases from 0.498, dP /d 7 remains nega-
tive, until at y=~0.5315, dP /dn changes sign, becoming
positive. This implies, by the discussion of Sec. II, that
the fluctuation and hence the broadening in the NNPDF
g,(r;) begins to get so enormous that P(7) actually starts
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to increase even though r,(max) [the location of the peak
of g,(r,;)] moves to smaller r values as 7 increases. At
Nn=nrg=0.5919, dP/dm changes sign once more,
becoming negative, implying that the effect of the motion
of r,(max) to smaller r; values begins to dominate the
spread in g,(r;) (in agreement with what was earlier en-
visaged).

Finally, we make some remarks about the structure of
the hard-sphere system in a global sense by investigating
the volume in phase space [The NNPDF g,(r;), on the
other hand, was used to study the system structure at a
microscopic scale.] To accomplish the global structure
study, we investigate the function &(7) defined as
€=1—enk. Employing our results for which myp
=1.14, 51, =0.498 (providing results which closely cor-
responds with literature results as shown in Fig. 3), we
easily employ Eq. (15) to compute e(n). In Fig. 5 we
show the result for €(n). We find that € starts at unity
and ends at zero (in agreement with earlier statements),
while the magnitude of the slope of the € function de-
creases rapidly and monotonically. This indicates that
since we may write Z(N, V)=(gV)"/N! and assuming N
fixed (to avoid a dimensionality problem, while ¥ may
vary as we vary 1), the volume in phase space decreases
very rapidly at low densities (as compared to the decrease
rate at high densities). Hence the hard-particle system
may be said to depart (in fundamental qualities) very
quickly from the ideal gas model as we increase 7 from O,
perhaps explaining why most theories (which are usually
of a perturbative nature) are rigorously applicable only in
the very-low-density realm of the hard-particle fluid (and
other realistic fluid models). Also, we find for R 0.5, the
€ plot indicates the volume in phase space is relatively of
approximately zero measure, strongly suggesting this re-
gion corresponds to the solid phase of the hard-sphere
system.

Clearly, the probability of constructing allowable
configurations of the entire system by randomly generat-
ing particle centers is (€V)Y/V¥=¢ ", Hence such a ran-
dom generation scheme will require extremely long run
times (especially for large N) when 7% 0.5 (where €~0).
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FIG. 5. &n) vs n (imp=1.84, myp=1.14).
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In which case, we can see why it may be almost impossi-
ble for computer simulations (which may even be much
more efficient than the simple random scheme described
above) to adequately sample phase space by generating
configurations for an entire system at high densities. An
investigation of € (or €) in the supposed phase transition
region shows that & (or €) changes only slightly in com-
parison with an approach in which the parameter m is
held fixed at a variety of values (including m =1.84).
This is not surprising as € is a global parameter and so is
expected to have some averaging effect (a microscopic in-
vestigation employing NNPDF’s however, may be ex-
pected to show some dramatic change at phase transi-
tion). From Eq. (9) we find that if pressure may be
infinite at some mid-density point 7j(0 <% <7,,), then
we require either € or € be discontinuous at =7 or €7k
be equal to unity. But a discontinuity in &, or the condi-
tion €7k =1, implies, respectively, a discontinuous
change in Z(N,V) or a zero value at mid-density for
Z(N,V). Since Z(N, V) is simply a measure of the size of
space of the allowed set of configurations in the hard-
particle system, a discontinuous change or mid-density
zero for Z(N,V) therefore seems unphysical. Hence it
would therefore seem that against the background of the
behavior of €, the concept of an infinite pressure some-
where at mid-density (the Bernal density) [7], sometimes
conjectured in the literature is untenable as an equilibri-
um phenomenon. By showing the temperature depen-
dence explicitly in the equation of state [i.e.,
P'=pkyT¢(n)], we find also that the temperature vari-
able may not provide any mechanism by which our above
conclusion may be invalidated. Our arguments, therefore
lends support to claims [7] that simulations at high densi-
ties (n=X 0.5) may usually have difficulty relaxing ade-
quately to equilibrium.

IV. REMARKS AND CONCLUSIONS

It has always been the desire in the area of statistical
mechanics to obtain an exactly soluble realistic three-
dimensional problem. Although exact results [2] involv-
ing the one-dimensional liquid model, the two-
dimensional Ising magnet, existence theorems, use of
pseudolattices, etc. have in the past succeeded in clarify-
ing various notions concerning real systems, this has not,
however, usually been considered entirely satisfactory.
This is more so especially as such expositions are often
deduced from models involving lattices and interaction
types usually considered to be too artificial. In recent
times, the computer simulation method has come to be
recognized as a major means by which accurate results
may be obtained for realistic systems. However,
difficulties are known to exist in assessing the adequacy of
results sometimes provided by the method. For instance,
in the computer simulation of the well-known hard-
particle system (considered one of the most appropriate
first order models for a variety of realistic fluid systems) it
is usually not easily determined whether or not adequate
relaxation to equilibrium is achieved, especially at high
densities [7]. Analytic methods, on the other hand, em-
ployed for investigating the hard-particle system have
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usually been rigorous only at low densities, while at
higher densities, they have largely been of a phenomeno-
logical nature.

In the present paper, we have used the concept of
nearest neighbor correlations [2] (in particular, the first-
nearest-neighbor PDF) in investigating the hard-particle
fluid. This has provided a theory of hard-particle fluids
in terms of a single unknown parameter m, reminiscent of
phenomenological theories such as the van der Waals
model involving one or more unknown parameters. Our
approach is in no way phenomenological, however, as our
parameter m may generally be computed from fundamen-
tal considerations. In the low-density branch of the equa-
tion of state we noted that m(7) may be rigorously for-
mulated. At the phase transition and beyond, however,
only an approximate means is available for formulating
m(7). Interestingly enough, the approximate means al-
lows us to locate the density at onset of phase transition
(in very good agreement with simulation data), thereby
allowing us to carry out a reasonable investigation of the
phase-transition region employing the approximate form
for m(n) at high densities beyond the phase transition.
As a result, we have not only been able to reproduce a
van der Waals-like loop at the phase transition (con-
sidered a valid first-order result at a first-order phase
transition) but also we have been able to carry out an ac-
curate analytic investigation of the hard-particle system
in the “solid phase” (where hitherto it has been difficult
to develop a rigorous theory) as evidenced by comparison

with computer simulation data. In the low-density
branch of the equation of state, our results are in excel-
lent agreement with computer simulation results.

On the whole, the present paper may be said to provide
a first-order theory of the hard-particle system valid at all
densities. It may be envisaged that more accurate means
may be developed in future investigations for approxi-
mating m(7) at the phase transition and beyond. Clearly
it will also be interesting if in future investigations the
series for m(m) as prescribed in this paper may be
developed to much higher powers. This may be very
beneficial as the series may converge much faster than the
virial series (usually used to investigate fluids at low den-
sities) considering that m(7) is a slowly varying function,
thereby providing essentially a complete theory for the
low-density branch of the equation of state.

A global structure analysis indicates a rapid decrease
of the volume in phase space even at low densities, there-
by suggesting why rigorous analysis have so far been re-
stricted to low densities and why computer experiments
may have difficulty in appropriately simulating the hard-
particle fluid at high densities. Also, the global structure
study indicates that the concept of an infinite pressure at
the ‘“Bernal density” is unphysical.
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